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Abstract
Structural properties of asymmetric binary sticky hard-sphere (SHS) mixture (the particular components being denoted

by SHS1 and SHS2), mimicking a system of interacting spherical colloidal particles in suspensions, near a planar wall,

maintaining the equilibrium with the homogeneous (bulk) phase, are investigated. The wall-SHS1 and wall-SHS2 cor-

relations of the SHS mixture are studied using the grand canonical Monte Carlo simulation and Percus-Yevick/Ornstein-

Zernike integral equation. The density profiles of particular components show interesting shapes stemming from the in-

terplay between the steric effects and the competitive adhesion among all possible species pairs, a characteristic feature

being the discontinuities in the shapes of the profiles at the distances from the wall-SHS1 and wall-SHS2 contact pla-

nes, which correspond to different sums of the multiples of particular hard core diameters. The agreement between the

theoretical predictions and simulation data is fair to very good and is better for the component comprised of weakly at-

tractive (adhesive) particles.

Keywords: Colloidal mixture, adhesive hard sphere model, inhomogeneous systems, Percus-Yevick theory, Monte Car-

lo simulation

1. Introduction

During recent years, considerable experimental,
theoretical, and simulation work has been devoted to the
investigations of the structural properties of colloids and
colloid-polymer mixtures at planar interfaces.1–11 Local
ordering of the colloidal particles at the interfacial region
may lead to fluid phase separation, demixing of colloidal
mixtures, and may provoke important interfacial pheno-
mena like the formation of thin layer films.12 These phe-
nomena are governed by the interfacial free energies bet-
ween the wall (substrate) and the fluid (material) and ori-
ginate from the complex interplay among the steric effects
and the particular colloid-wall and colloid-colloid interac-
tions. Their molecular interpretation therefore include va-
rious interparticle interaction potentials varying from the
simplest hard sphere model, mimicking the sterically sta-
bilized colloids, to the model that treat the colloidal par-
ticles as equally or oppositely charged hard spheres. Furt-
her, as many properties of such complex physical systems

are governed by the competition between hard-core repul-
sion and short-range attractive interparticle interactions,
various models for the so-called attractive colloids have
been also frequently applied.13–17 The simplest model,
which combines both the hard-core repulsion and the
short-ranged attraction, is Baxter’s sticky hard sphere
(SHS) fluid.18 This model represents an extreme case of
the hard sphere system with the square well in the limit of
infinitely strong and infinitesimally short ranged attrac-
tion, leading to a finite interparticle attractive strength. In
the sticky limit, it has an advantage over the usual square-
well model and other model potentials involving a conti-
nuous attractive part in the pair potential of interaction
(e.g., the hard-core attractive Yukawa (HCAY) model flu-
id and the Lennard-Jones (LJ) fluid) as it has been shown
to possess an analytic solution to the Ornstein-Zernike
(OZ) equation in the Percus-Yevick (PY) approximation18

and in a class of other closures.19 SHS model is therefore
especially suitable for the modeling of colloidal systems
as the range of inter-colloidal interactions in dispersions is
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usually much shorter than the size of colloidal particles.
Numerous articles appearing in the literature thus reported
on the application of this model in colloid science, for
example in studying the interfacial equilibrium,20,21 phase
behavior,22 solvation phenomena,23–25 and sedimentation
equilibrium26,27 in colloidal systems, in modeling the
charged colloids,28 and in exploring the kinetically arre-
sted metastable gels.29 Further, it has also been applied for
a description of some complex experimental observations
in colloidal systems. For example, SHS model has been
used to analyze the measurements of small angle neutron
and x-ray scattering of various colloidal suspensions.30–36

In addition, numerous articles reported also integral equa-
tion studies of the properties of the one-component SHS
model and related fluids near the solid surfaces and confi-
ned into the pores.37–43 Theoretical investigations of pure
adhesive fluid have been also extended to SHS mixtures
of arbitrary size and adhesion strength.44–46 An example of
a two-component mixture has been applied to model gela-
tion in a concentrated dispersion of colloidal particles,47

solvent-mediated forces between colloidal particles in a
mixed solvent,48 and the intermicellar attractive interac-
tion in a solution containing reverse micelles.49

Purely theoretical treatments of SHS model have
been accompanied by computer simulations. Because of
the impulse character of the adhesive potential special
modifications of the conventional simulation technique
rendering possible the sampling of the contact configura-
tions of particles were made by Kranendonk and Fren-
kel.50 This simulation method has been further generali-
zed to restricted geometry and to the implementation of
the grand canonical ensemble Monte Carlo (MC) simula-
tion.51–54 In our recent works,55–57 we have extended the si-
mulation studies of pure adhesive fluid to the symme-
tric55,56 and asymmetric57 binary mixtures. The structure
of the bulk symmetric binary mixture and its adsorption in
planar pores has been investigated in the works of Refs.
55 and 56, respectively, while the very recent article of
Ref. 57 reports on the structural study of the bulk two-
component system of SHS fluids with the size asymmetry
of the particles of both components. In the present work,
MC simulation and PY theory are used to investigate the
structural properties of such two-component SHS system,
mimicking an asymmetric binary colloidal mixture, near a
planar wall.

2. Model and Methods

2. 1. Model
The model comprises a mixture of sticky hard-sphe-

re fluids confined between two plane, parallel, smooth,
hard plates of infinite extent. The phase confined in the
pore is in equilibrium with the bulk phase characterized
by the bulk number densities ρi and the chemical poten-
tials μi. The walls are parallel to the plane (0, y, z) and lo-

cated at x = 0 and x = L. The sphere diameter of the spe-
cies i is σi, so only the width L – σi is available to their
centers. When modeling wide enough pores, where there
exist domains of the fluid sufficiently distant from both
walls to retain practically unperturbed density and other
properties of the bulk phase, it can be accepted that the
structure of the fluid at either plate does not appear to be
affected by the presence of the opposite wall. These re-
sults should therefore be almost identical to the density
profiles next to isolated walls or walls at infinite se-
parations. This way, the structure of the fluid near a single
hard flat interface is considered.

The molecules interact among themselves through
the special form of square-well potential φij (r) with the
well depth εij and width σij – σ′ij where σij = (σi + σj)/2, in
the limit σ′ij → σij. This corresponds to an infinitely deep
and short ranged attractive potential well leading to a fini-
te probability of particles i touching particles j, the Boltz-
mann factor exp(– βφij) having the form of Dirac δ func-
tion

(1)

Above, β = 1/kT, where k is the Boltzmann constant
and T the temperature, Θ(x) is the Heaviside unit-step
function denoting the prohibition of hard core overlaps,
and τij is the stickiness parameter related to the strength of
adhesion and to the temperature of the system. The adhe-
sion strength between the particles of ith and jth species
decays with increasing τij, τij = ∞ corresponding to the ab-
sence of an attractive i – j interaction.

The external wall-fluid hard-core potential φwi is gi-
ven by

(2)

where x is the coordinate perpendicular to the walls.

2. 2. Percus-Yevick Approximation for the
Multicomponent System of Adhesive
Fluids
A detailed theoretical analysis on the structure of

confined sticky hard-sphere (SHS) mixture based on the
Percus-Yevick (PY)/Ornstein-Zernike (OZ) theory was
reported in our previous article.58 In the following we give
a summary of some crucial points accompanying the deri-
vation of the final expression for the calculation of inho-
mogeneous structure of the SHS mixture in planar pores.

Due to the planar symmetry of the wall-fluid inte-
raction potential, Eq. 2, the average fluid number density
in the gap depends only on the perpendicular coordinate x.



147Acta Chim. Slov. 2009, 56, 145–155

Lajovic et al.:  Ordering of Attractive Colloids near a Planar Wall: ...

The local density ρwi(x) of ith component is related to the
wall-fluid total correlation function hwi(x) by

formula

We determined hwi(x) by solving the OZ equation
for the wall-fluid distribution59

(3)

supplemented by the PY closure relation60

(4)

for the wall-fluid correlations. The direct correlation func-
tions cij we obtained from the PY/OZ integral equation for
the fluid-fluid correlations for the SHS mixture in the ho-
mogeneous phase, the corresponding analytical expres-
sions derived by using the Baxter’s transformation of the
OZ equation,61,45 can be found in our preceding work.58

For purely hard-core interactions among the walls
and the molecules, the PY relation (4) for the wall-fluid
correlations reads:

formula

and

(5)

For each set of the parameters ρi, L and τij, the nu-
merical solution of the system of Eqs. 3 for a set of equi-
distant grid points x within the intervals ½σi < x < L – ½σi
was obtained by the iteration procedure. For each grid
point x, the real space convolution integrals over the sphe-
res of radius σij with their centers located at x have to be
evaluated. The integrands are the products of two diffe-
rently symmetric functions, c(r) and h(x). In view of the
delta function term included in the expressions for the di-
rect correlation function58 both volume and surface inte-
grations have to be carried out. After a suitable substitu-
tion, the system of PY/OZ Eqs. 3 may be rewritten in the
form

(6)

where the functions Sij(u):

(7)

denote the analytic integrals over the areas of the circles
of radius (σ2

ij – u2)½. As the functions cij are related only to
the bulk system, the values of the integrals Sij(u) can be ta-
bulated prior to the iteration procedure, the resulting final
analytic expressions can be found in our previous work.58

2. 3. Monte Carlo Simulation

The adhesive potential described by Eq. 1 implies fi-
nite probabilities of contact configurations between mole-
cular pairs. This property is related to the infinite depth of
contact intermolecular potential, a feature that cannot be
captured by the conventional Monte Carlo (MC) method
with particles moving at random in a three-dimensional
space. This problem has been overcome by monitoring the
particle motion in a transformed configurational space
where finite volumes were being assigned to the energeti-
cally favored binding configurations.50 Each move invol-
ving zero to triple bonded states corresponds to a move
within the three-dimensional subvolumes of the rescaled
configurational phase space in which the volume elements
are expanded in proportion to the Boltzmann factors of a
specified configuration. A detailed description of the Kra-
nendonk-Frenkel method for the simulation of a single
SHS fluid is to be found in their original paper50 as well as
in the recent works of Miller and Frenkel.52–54 In our re-
cent works55–57 we reported on the first simulation studies
of the SHS mixtures. The main features of the canoni-
cal55,57 and grand canonical56 simulation of the asymme-
tric two-component SHS system are briefly described in
the Appendix.

3. Numerical Results 
and Discussion

The values of the stickiness parameters τij can be
thought of as being a measure of either the strength of ad-
hesion or the temperature of the system. In order to avoid
this uncertainty and to make contact with reality, the adhe-
sive potential is usually related to a more realistic poten-
tial, say φij, via the second virial coefficients. In this way,
a system with the potential φij is actually modeled by the
analytically tractable SHS system.48,58 Matching the se-
cond virial coefficients of both systems, the dependence
of τij upon temperature is given by

(8)
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Similarly as in our previous works,48,58 we use the
truncated Lennard-Jones (LJ) potential φi j

LJ for φreal
ij     defined

by the equation

(9)

together with the Berthelot rule for the cross-interaction
parameter of the depth of the potential well

(10)

In the present work we examine the SHS mixture
with the following values of the stickiness parameters τij :
τ11 = 0.204, τ22 = 0.448, and τ12 = 0.304. These values we-
re obtained by matching the second virial coefficients for
SHS potential and truncated LJ potential (the range A is
given the value 10σij) for the temperature T = 300K and
LJ energy parameters ε ∗

ij = εij /k, ε ∗
11 = 125 K and ε ∗

22 = 60
K. The size of the molecules of component 1 is σ1 and
that of the molecules of component 2 is σ2 ≥ σ1. The com-
position of the mixture is expressed in terms of the mole
fraction x1 = ρ1/ρ, where ρ1 is the number density of com-
ponent 1 and ρ = ρ1 + ρ2 the corresponding value for the
total number density. The reduced density ρ* = ρσ 3

1 is

Figure 1. The PY (lines) and MC (symbols) one-particle distribution functions gw1(x) and gw2(x) of the binary SHS mixtures near a single hard wall

at the values of the stickiness parameters τ11 = 0.204, τ22 = 0.448, and τ12 = 0.304, at different values of the diameter ratio γ = σ2/σ1. The systems are

in equilibrium with bulk phases of total reduced density ρ* = 0.4 and composition x1 = 0.5. Insets: The sketches depict the structures indicating the

distances from the wall (w) to the darker particles, which correspond to the particular marked positions on the curves. The smaller and bigger sphe-

res represent the smaller molecules of component 1 and the bigger molecules of component 2, respectively.
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used in the following discussion and σ1 is chosen for the
length unit. The parameters B1 and B2 entering the simula-
tion of the bulk system were adjusted to the values, which
resulted in the equimolar composition x1 = 0.5 and total
bulk densities ρ = 0.2 and 0.4, respectively.

In Figures 1 and 2 we present the MC and PY one-
particle wall-fluid distribution functions of particular
components gwi (x) = ρwi (x)/ρi of the SHS mixtures near a
single hard wall. Individual figures are subdivided into
parts (a)-(b) and (a)-(c), respectively, which successively
illustrate the effect of increase in the diameter ratio γ =
σ2/σ1. The fluid mixture at the planar interface is in equi-
librium with the bulk phase of equimolar composition x1 =
0.5 and the bulk total density ρ∗ = 0.4 (Fig. 1) and ρ∗ = 0.2
(Fig. 2). In order to distinctly see the detailed structure of
the particular components, different scales are used for or-
dinate axes in individual parts of the graphs showing gw1

(first column) and gw2 (second column), respectively. Nu-
merous articles in the literature reported the results for the
structure and phase behavior of fluid mixtures at interfa-
ces and in confined systems. A general feature found for
the structure of the fluids was their spatial inhomogeneity
as a consequence of the packing effects of fluid molecules
in the domain close to the wall(s). The actual shape of the
density profiles, which characterizes this inhomogeneity,
depends on the specific nature of the fluid-fluid and the
wall-fluid interactions, and on the degree and geometry of
confinement. When an inhomogeneous structure of the
fluid stem from the presence of a single wall or wide
enough gap, flat density profiles are restored at sufficient
distances from the wall(s), irrespective of the specific na-
ture of the intermolecular potential of interactions. Upon
approaching the wall these interactions begin to compete
with steric effects. This competition, of course, is now
strongly dependent on the particular intermolecular poten-
tial and, in addition, on the temperature of the system.
Whereas the strongly attractive molecules prefer the re-
gions offering better chance for mutual attraction, i.e.,
away from the hard obstacles or confined system, just the
opposite behavior is observed for the molecules interac-
ting through weaker attractive or even purely repulsive in-
teraction potential. Clearly, the latter molecules try to
avoid each other and as such they prefer the regions adja-
cent to the walls of the confinement. Such molecules are
therefore accumulated next to the walls to a greater extent
than those incorporating stronger attractive interactions.
This gives rise to more pronounced packing effects lea-
ding to more distinct layering structure and higher wall-
fluid contact density of the fluid with weakly attractive or
purely repulsive particles. The density profiles of indivi-
dual components of the mixture were found to be oscilla-
tory with periods equal to the particular sizes of the partic-
les. Besides these general characteristics regarding the
structure of fluid(s) subjected to different external fields
caused by the presence of various spatial constraints, ad-
ditional features are observed in the inhomogeneous

structure of adhesive fluid as a consequence of the impul-
se character of SHS intermolecular potential. As all the
stickiness parameters τ11, τ22, and τ12 take finite values,
the tendency of the molecules of both components to-
wards association competes with steric effects. The sticky
molecules have a better chance for adhesive intermolecu-
lar interaction at sufficient distance from the wall. This
tendency is clearly more pronounced in the case of com-
ponent 1 due to the stronger 1–1 adhesion corresponding
to a lower value of the stickiness parameter τ, i.e. τ11<τ22.
The molecules of weakly adhesive component 2 are there-
fore accumulated next to the walls to a greater extent, thus
giving rise to the higher contact densities and higher am-
plitude of oscillations in the wall-component 2 density
profiles. Consequently, the molecules of component 1 are
driven away from the wall. Besides the steric effects, the
overall pictures of the profiles of both components are, of
course, determined by the combination of the strength of
attraction among all the possible species pairs. The effect
of partial exclusion of component 1 from the region adja-
cent to the walls are thus opposed by the 2–1 adhesion (fi-
nite τ12) among the molecules 1 and those from the denser
and highly layered component 2 in the vicinity of the wall.
The distribution of molecules of component 2, on the ot-
her hand, is similarly affected by the formally identical
1–2 adhesive interaction. In the case of symmetry in size
of the molecules of both components [(a) parts of the figu-
res], the isotherm slopes (the first derivative of gwi on x) of
both components show discontinuities at distances from
the wall/fluid contact plane, which are multiples of the
molecular size σ1 = σ2 = 1, similarly as observed in the
case of a pure adhesive fluid.51 This is a result of the delta-
function peak in the radial distribution function gij(r) at r
= σ1 = σ2 = σ12, reflecting the finite probability of 1–1,
2–2, and 1–2 contact configurations. In the asymmetrical
case, γ > 1 [(b) and (c) parts of the figures], these discon-
tinuities appear at the distances n · σ1 + m · σ2 (n = 0,1,2,...;
m = 0,1,2, ...) from the wall/component 1 and wall/compo-
nent 2 contact planes as a consequence of the formation of
successive molecular layers with two different molecular
sizes σ1 and σ2, the exception being the combination n = 0,
m = 0. Let us take, for instance, the correlation function gw1

(x). The discontinuities at x = σ1/2 + n · σ1 result from the
1–1 adhesion and refers to the arrangement of parallel mo-
lecular layers where the first monolayer, being located ad-
jacent to the wall, is that of component 1 and the successi-
ve molecular layers of the same component. The disconti-
nuities at x = σ1/2 + m · σ2 stem from the arrangement of m
successive molecular layers of component 2 from the wall
(the finite probability for the 2–2 contact configuration is
the consequence of 2–2 adhesion), the (m + 1)-th being
that of component 1. One can imagine, of course, any “mi-
xed” arrangement of molecular layers of the two compo-
nents, thus giving rise the appearance of discontinuities at
any combination of n and m. The behavior of gw2 (x) may
be explained by utilizing the same arguments.
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Figure 2. Same as Fig. 1 but for the bulk total reduced density ρ* = 0.2
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A comparison of the PY theoretical predictions and the
simulation data for the local structures of the SHS mixture at
planar interface seen in Figures 1 and 2 indicates fair to very
good agreement between the results of both methods. In all
cases, the singlet PY theory satisfactorily predicts the structu-
re of the SHS mixture, the exception being the regions in clo-
se vicinity to the walls, where somewhat larger discrepancies
between the PY and MC results are observed. These discre-
pancies are more pronounced for the component comprised
of strongly adhesive particles. However, we have to stress he-
re that in the present work we consider the SHS mixture at
rather mild conditions referring to both the role of the inter-
particle attraction (adhesion) and exclusion volume effects.
At stronger attractive interactions among the molecules
and/or for the solution richer in the component containing
bigger molecules one can expect that the performance of the
theory would considerably worsen, similarly as found for the
bulk SHS mixtures studied in our recent paper.57

4. Conclusions

In this paper we report grand canonical Monte Carlo
simulation and Percus-Yevick studies of the structure of
asymmetric two-component sticky hard-sphere (SHS) sys-
tem, mimicking asymmetric binary colloidal mixture, near
a single hard wall. Due to the delta-function in the 1–1,
2–2, and 1–2 interparticle interaction potential the wall-
component 1 and wall-component 2 distribution functions
exhibit peculiar shapes characterized by successive discon-
tinuities, which appear at the distances equal to the separa-
tions of mutually adhered particles of both components. In
all cases we found fair to very good agreement between the
results of the pure theory and the simulation data.

In future theoretical work, we plan to study the po-
tential of mean force and the solvation force between the
sticky colloidal solutes immersed in molecular SHS sol-
vent. As usual, colloid dispersion will be modeled as a
multi-component system formed by large (macro)partic-
les mimicking colloidal solute and smaller molecules de-
noting the solvent component. This way, lyophilic colloi-
dal interactions evidenced experimentally in nonionic col-
loidal dispersions62 will be examined.
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Appendix: Monte Carlo Simulation of Asymme-
tric Sticky Hard Sphere Mixtures

In the following paragraphs we briefly sum up the
main features of the canonical55,57 and grand canonical56

simulation of the asymmetric two-component sticky hard
sphere (SHS) system.

A. 1. Canonical Simulation

Motions of particles take place in a transformed
configurational space where finite volumes are being as-
signed to the energetically favored binding configura-
tions.50 Each move involving zero to triple bonded states
corresponds to a move within the three-dimensional sub-
volumes of the rescaled configurational phase space in
which the volume elements are expanded in proportion to
the Boltzmann factors of a specified configuration. In the
rescaled phase space, the so-called effective volumes of
each particular degree of binding cover all the realizations
of given type of bond b inside the so-called test sphere50

whose radius is adjusted according to the total density of
the fluid mixture. Calculation of the effective volumes in
the case of binary SHS mixture claims the consideration
of different adhesion strengths τij and interparticle contact
distances σij (i and j being 1 or 2) corresponding to diffe-
rent contributions of the particles of individual species to
the total effective volume for each particular degree of
binding. Accordingly, the configurations belonging to the
same coordination state, i.e., the same number of contacts,
have now different statistical weights. The essential suc-
cessive steps of the MC algorithm may be outlined as fol-
lows:

(1) Choose a particle at random. This štest particle’
may be one of component 1 or one of component 2 with
the hard-core diameters σ1 and σ2, respectively. We deno-
te it by the index t.

(2) Make catalogue of the individual particles, pairs
of particles, and particle triplets that allow the formation
of single, double, and triple bonds with the test particle in-
side the test sphere. For all the particles from this list it is
necessary to know which of the either components they
belong to. On the basis of this list, one calculates the ef-
fective volumes for each individual degree of binding ta-
king into account different weights depending on the dif-
ferent adhesive strength acting between like particles of
either components or unlike particles, and, in addition, on
the different sizes of the particles of individual compo-
nents. At this calculation, only the parts of the effective
volumes located inside the test sphere of volume V have to
be taken into account. In turn, the effective volume for the
formation of single bond (one-contact configuration) is
determined by the integral over the available surfaces of
other particles, 50,54,57

(A1)

where the summation takes into account both components
of the binary mixture, which gives rise to two different va-
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lues of the pre-integration factor σ tα /12τtα stemming from
different adhesion between like or unlike particles and
from different sizes of the particles, i.e., the one corres-
ponding to the adhesion between unlike particles, σ12

/12τ12 = σ21 /12τ21, and the other referring to the adhesion
between like particles, σ11 /12τ11 or σ22 /12τ22 (depending
on the test particle, i.e. which component it belongs to).
Ignoring for the moment the finite size of the test sphere,
the contribution of the particle α to the total effective vo-
lume V (1)

eff is50,54,57

(A2)

Further, the double bond can be formed when the
test particle slips around the circle when simultaneously
touching two other particles, α and β. This is possible if
the distance between the particles of this particular pair is
less than the sum of t – α and t – β contact distances, σ tα
+ σ tβ. The calculation of the effective volume for the for-
mation of double bond therefore include the integration
around the circles obtained in this way for all pairs of ot-
her particles from the list, the corresponding expression
reads50,54,57

(A3)

where the double summation considers all pairs (inclu-
ding the particles of either component) allowing the for-
mation of double bond inside the test sphere. The pre-inte-
gration factor now takes three different values referring to
the formation of the double bond of test particle with (i)
two like particles of the same component, (ii) two like
particles of the other component, and (iii) two unlike par-
ticles. Therefore, the pair of particles α and β contributes
to the total effective volume V (2)

eff:
50,54,57

(A4)

rαβ being the radius of the circle formed by points lying on
a distance σ tα and σ tβ from the particles α and β, respecti-
vely. Again only the parts of the circle(s) falling inside the
test sphere have to be taken into account. Finally, the ef-
fective volume for the possible triple bonds of the test par-
ticle with any triplet of particles equals to50,54,57

(A5)

with four different values of the pre-integration factor re-
sulting from the above triple summation. These values fol-
low from different combinations of the values of the indi-
ces α, β, γ, each taking the value 1 (component 1) or 2
(component 2), i.e., (i) 1,1,1; (ii) 1,1,2 = 1,2,1 = 2,1,1; (iii)
1,2,2 = 2,1,2 = 2,2,1; and (iv) 2,2,2. Contribution of the
particular triplet α, β, γ to the total V (3)

eff is given by50,54,57

(A6)

rtα , rtβ , and rtγ are the unit vectors along the directions of
the vectors joining the center of the test particle to the cen-
ters of the other three particles, α, β, and γ. With the factor
2 in the above Eq. A6 the two equivalent contributions
with the test particle touching the particles of the triplet
from both sides are taken into account. The effective volu-
me for a free move of the test particles without forming
any bond with other particles is just the volume of the test
sphere, V (0)

eff = V.
(3) Calculate the transition probabilities for each

type of bond b (b ranging from 0 to 3) and select a particu-
lar configuration with the weight equal to its transition
probability

(A7)

(4) Randomly choose a position within the region of
space corresponding to the selected type of bond. Here,
consider different weights caused by different strength of
adhesion between the test particle and other particles and
by different sizes of the particles for this (selected) degree
of binding.

(5) Accept the new configuration unless a hard-core
overlap has been detected.

A. 2. Grand Canonical Simulation

In the open ensemble, the chemical potentials of the
individual components μi, the volume V, and the tempera-
ture T of the system are fixed, while the numbers of partic-
les Ni are allowed to fluctuate. This set of independent pa-
rameters that define the thermodynamic state of the sys-
tem makes possible the study of equilibrium between the
SHS mixture in the homogeneous phase and the same
mixture being subjected to some external potential. The
latter, in our case, was imposed by the presence of two pa-
rallel, perfectly smooth hard walls at a specified separa-
tion L mimicking a planar slit. The actual distances acces-
sible for the individual components of the confined SHS
mixture were therefore L – σ i. Denoting the perpendicular
direction by x, the fluid mixture between the walls exten-
ded to infinity along the directions y and z, parallel to the
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walls. In practical simulations, the system was modeled as
an infinite array of identical simulation cells of the volu-
me L × a2, repeating themselves in the two lateral direc-
tions, along which the minimum image convention was
applied. No periodicity needed to be assumed in the direc-
tion x normal to the plates. In addition, when modeling
wide enough pores, where there exist domains of the fluid
sufficiently distant from both walls to retain practically
unperturbed density and other properties of the bulk pha-
se, it could be accepted that the structure of the fluid at eit-
her plate did not appear to be affected by the presence of
the opposite wall. These results should therefore be al-
most identical to the density profiles next to isolated walls
or walls at infinite separations. This way, the structure of
the SHS mixture near a single hard, flat interface was con-
sidered. In most cases, the value for the width of the gap
L about ten molecular diameters was sufficient to avoid
the interference between the symmetrical density profiles
at individual walls of the pore.

During the simulation, the phase space was sampled
through alternating canonical (CMC) and grand canonical
(GCMC) steps, i.e. by the movement of randomly chosen
particle, and by the addition to or removal of particles
from the system. Additions and removals were attempted
randomly with a probability P, so the probability for a
move of a randomly chosen particle was 1 – 2P. The value
P ≈ 0.15 was used in most of our runs. The general featu-
res of the GCMC method are described elsewhere.63 Furt-
her, details peculiar to the GCMC simulation of the one-
component SHS fluid were discussed in our previous
work51 and in the recent works of Miller and Frenkel.53,54

Here we only resume some essential characteristics con-
cerning the simplification of the GCMC algorithm and gi-
ve some points regarding the extension to the GCMC si-
mulation of SHS mixture. In the case of SHS system, each
addition or removal of a particle may be accompanied by
the formation or by the breaking of the bond(s). For this
reason, the standard GCMC relations63 for the acceptance
probability of an attempted addition and deletion, respec-
tively, should be suitably modified. Similarly as has been
noted in the context of CMC simulation, the effective vo-
lumes V (b)

eff for the specified binding states of the particle
should be calculated. Unlike the CMC simulation, where
the calculation of V (b)

eff is restricted to the interior of a sui-
tably chosen test sphere, which is much smaller than the
entire MC cell, the effective volumes should, in principle,
be determined for the entire MC cell at each GCMC step.
This would, of course, consume a prodigious amount of
computer time, especially at high densities where the
number of available binding configurations may be extre-
mely large. For this reason, we prefer to add and remove
only non-associated particles and let the number of bonds
adjust through internal equilibration during the CMC
steps, similarly as proceeded in the case of the GCMC si-
mulation of the one-component SHS fluid.51,53,54 This sim-
plification leads to the expression for the acceptance pro-

bability quite similar to that of the standard method,63 the
only difference being in considering only a fraction of the
entire number of particles, i.e. the non-bounded particles,
denoted by the indexes 0. Chemical potentials of indivi-
dual species of the whole system, μi, and of non-bounded
particles, μi,0, are given by

and (A8)

where the terms ln Λ3
i are related to constant kinetic con-

tributions, Λi being the de Broglie thermal wavelengths.
〈ρi〉 and 〈ρi,0〉 are the average densities whereas μ ex

i and
μ ex

i,0 denote the excess chemical potentials of i-th compo-
nent. Considering the chemical potentials of non-bounded
particles of individual species to be equal to those of the
whole system, the following expression for the new para-
meters Bi, which are kept constant during the simulation,
are obtained:

(A9)

The acceptance probabilities of attempted additions
f (mn)

i,0   or of deletions f (nm)
i,0   of the non-bounded particles of

individual species, where N (n)
i,0 = N (m)

i,0 + 1, read51,56

(A10)

with

(A11)

where the energy changes due to additions or deletions of
non-associated particles of individual species  Δu(mn)

i      equal
zero. This procedure is therefore identical to that used for
ordinary hard sphere fluid. From the values of Bi and the
average densities 〈ρi〉, which result from the simulation of
the bulk system, the excess chemical potentials μ ex

i of the
individual components of the SHS mixture and the corres-
ponding values for the non-bounded particles μ ex

i,0 can be
obtained. As fixing Bi is equivalent to fixing μi the same
values of Bi are then used in the GCMC simulation of the
SHS mixture under the influence of external field.
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Povzetek
V pri~ujo~em delu smo raziskovali vpliv zunanjega polja (toge ravne stene) na strukturo dvo-komponentne asimetri~ne

me{anice modelnih teko~in z adhezivnim medmolekulskim potencialom, ki ponazarja binarni sistem interagirajo~ih ko-

loidnih delcev v suspenziji. Nehomogeni (omejeni) koloidni sistem je bil v ravnote`ju z homogenim (neomejenim) si-

stemom. Prostorske korelacije stena-komponenta 1 in stena komponenta 2 smo obravnavali z velekanoni~no simulacijo

Monte Carlo in z Ornstein-Zernike-ovo integralsko ena~bo v Percus-Yevick-ovem pribli`ku. Svojska oblika gostotnih

profilov posameznih komponent je posledica zapletenih vzajemno delujo~ih interakcij stena-molekule ter adhezivnih

parskih medmolekulskih interakcij 1–1, 2–2 in 1–2. Zaradi impulznega karakterja adhezivnega potenciala so ti na raz-

daljah med steno in molekulami, ki so enake razli~nim vsotam ve~kratnikov premerov molekul posameznih komponent,

nezvezni. Primerjava med rezultati simulacije in napovedmi PY teorije ka`e na skoraj kvantitativno ujemanje rezultatov

obeh metod. Ker uspe{nost teorije pojema z nara{~ajo~o jakostjo privla~nih medmolekulskih interakcij, se v primeru ad-

hezivne me{anice teorija bolje obnese za komponento {ibkeje adhezivnih molekul.


